ما در آمار و احتمال تابعی داریم بنام تابع انتظار! که بیانگر انتظار وقوع یک پدیده است! غافلگیری یعنی چه؟ یعنی انتظار نداشتن! پس می توان برای غافلگیری هم یک تابع تعریف کرد آنهم تابعی که وارونه ی تابع انتظار باشد. تابع انتظار در حقیقت بیانگر احتمال وقوع یک پدیده است و تابع غافلگیری وارونه ی آن یعنی عدم احتمال وقوع یک پدیده . پس تعریف بنده می تواند یک تعریف ریاضی درست از غافلگیری باشد!
معمولا لگاریتم ها به سمت صفر میل نمی کنند بلکه دقیقا یک مقدار مشخصی دارند و آنچه که به سمت صفر می تواند میل کند حد یا همان lim هست که می تواند به سمت صفر میل کند!
مثال نقض؟!
شما یک مثالی آوردید که در آن دو حالت بیشتر وجود ندارد یعنی یا به هدف می خورد یا نمی خورد و در اینجا حالت ها دو تا هستند از اینرو اینگونه احتمالات گسسته هستند ووبرایشان حد تعریف نمی گردد. در ضمن در مثال شما احتمال رخ دادن حالت ها نیز کاملا مشخص است یعنی 20% و 80%! پس اصلا به حرف بنده که مربوط به موضوع این جستار هست پیوندی ندارد. چون در این جستار ما 7 روز داریم که هر کدام دارای یک وزن احتمالی هست که در عین حال به هم وابسته هستند. در ضمن بنده آمدم و برای غافلگیری یک تابع بیان داشتم تابعی که با کم شدن روزها به سمت صفر میل کند ! البته منظورم از به سمت صفر میل کردن این بود که کاهشی است یعنی مقدارش با کم شدن روزها کم می شود.
خب این به زبان ریاضی یعنی چه؟ یعنی تابع انتظار آن به سمت صفر میل کند یا یک مقدار بسیار کمی چون 0.001 باشد! یعنی احتمال وقوع آن نتیجه برای ما صفر باشد! برای نمونه ما یک سفری به هلند داشته باشیم و دوست دوران کودکیمان در ایران را ناگهان در وسط خیابان ببینیم! خب احتمال وقوع چنین پدیده ای به سمت صفر میل می کند ولی اگر این پدیده رخ دهد مسلما ما غافلگیر خواهیم شد.
چه تناقضی؟!! نکند شما میل کردن را همان برابر تلقی می کنید!!!؟
برابر بودن # میل کردن
وقتی می گویم به سمت صفر میل می کند یعنی به سمت صفر میل می کند ولی به خود صفر که نمیرسد! یعنی می تواند به مقادیری چون 0.001و 0.000001,.. برسد اما به خود صفر نه!
شما که اصل عدم قطعیت را خوب درک کرده اید لطفا آن را به زبان ریاضی بگویید!!
به نظر می آید شما اولین پست این جستار را بادقت نخوانده اید ! چون استاد این حرف را روز شنبه میگوید واز اینرو از شنبه تا5 شنبه می تواند بگوید که فردا آزمون است!