تاریخ مـزداهیک - History of Mathematics
آشنایی با ریاضیات و تعامل با آن، در ذات ، اساسیترین شرط برای ورود و چیرگی به هر علمیست . ریاضیات شاخصترین نوع دانش محض و انتزاعی است.آشنایی با علم ریاضیات اگرچه ضروری است، اما آشنایی با تاریخ ریاضیات بسیار جذاب و عبرتاموز است؛ به خصوص که در این حوزه گاه گاه به نابغههایی چون لایبنیتز و برنولی و یا صاحب عکسِ آواتارِ من برمیخوریم چنانکه در دیگر شاخههای علوم بینظیر یا کمنظیرند.علاوه بر این کمتر فیلسوفی هست که به ریاضیات به طور تخصصی تسلط نداشته باشد.تعدادی از آنها که در ذهنم هستند : فیساقورس،تالس،افلاتون،ارس تو، دکارت،لایبنیتز،توماس هابز،باروخ اسپینوزا،امانوئل کانت،برتراند راسل و... (برخی از اینان بیش از اینکه فیلسوف باشند ، ریاضیدان هستند مثل پاسکال و نیوتون و برخی دیگر فیلسوفانی هستند که به ریاضیات نیز نگاهی ویژه دارند مثل اسپینوزا و برخی دیگر چناناند که نمیتوان گفت که ریاضیدان هستند یا فیلسوف مثل برتراند راسل؛ و همین به خودیِ خود نشان از رابطه بیبدیل ریاضیات با فلسفه دارد).
روزگاری ریاضیات صرفا سروکله زدن با اعداد بود و یافتن نسبتها میان آنها. از سالهای 1600 ریاضیات وارد عرصههایی شد و چنان پیشرفتهایی کرد که تسلط و چیرگی بر هریک از زیرشاخههای(نه شاخهها) این علم نیز سالها کار میبرد.
در این جستار سعی من بر این است که برای خوانندگان مطالبی منظم، پیوسته و وابسته بهم برای آشنایی با تاریخ این علم گردآوری کنم.منبع نخستین من کتاب « آشنایی با تاریخ ریاضیات » نوشته :هاوارد دبلیو.ایوز(Howard W. Eves) ؛ ترجمه دکتر محمدقاسم وحیدیاصل است.این کتاب دوجلد است و از طرف مرکز نشر دانشگاهی منتشر شده است.در واقع ساختار این جستار بر اساس همین کتاب است ، اما در حین نگارش و تنظیم مطالب، بیشک از منابع دیگر نیز استفاده خواهم کرد.
امید است مفید واقع شود.
3 فایل پیوست
1-روشهای ابتدایی عددنویسی و شمارش (بخش دوم)
بابلیان قدیم که پاپیروس نداشتند و به سنگهای مناسب دسترسی کمی داشتند ، برای نوشتن عمدتا از گل رس استفاده میکردند . آنان کتیبه را به وسیله فشردن قلمی ، که نوک آن به شکل متساویالساقین تیزی بود، بر یک لوح گل رس مرطوب نقش میکردند . با کج کردن قلم از حالت قائم ، این امکان وجود داشت که زاویه رأس یا زاویهی مجاور به قاعده مثلث متساویالساقین بر گل رس نقش شود که بدین ترتیب دو نوع نشانه گوه-شکل (میخی) به وجود میآمد. سپس لوح در کورهای پخته میشد تا به درجهای از سختی برسد که در مقابل گذشت زمان مقاوم و به یک سند دائمی بدل شود. بر روی لوحهای میخی که به فاصله زمانی 2000 ق.م تا 200 ق.م تعلق دارند ، اعداد کوچکتر از 60 به کمک دستگاه گروه بندی سادهای به پایه 10 بیان شدهاند ، و جالب آنکه عمل نوشتن اغلب با استفاده از علامت تفریق ساده شده است. علامت تفریق و علایم بکار رفته برای 1 و 10 به ترتیب از چپ به راست عبارتند از :
فایل پیوست 1486
که در آن علامت به کار رفته برای 1 و دوقسمتی که علامت تفریق را میسازند با استفاده از زاویه رأس مثلث متساویالساقین به دست آمدهاند ، و علامت به کار رفته برای 10 با استفاده از یکی از زوایای مجاور به قاعده حاصل شده است . به عنوان مثالهایی از اعداد نوشتاری که از این علایم در آنها استفاده شده ، داریم :
فایل پیوست 1487
شمارهای آتیکی (Attic )، یا هرودینی[i] زمانی پیش از قرن سوم قبل از میلاد ظهور یافتند و دستگاه گروهبندی سادهای بر مبنای 10 تشکیل میدهند که از حروف اول نامهای عددی ساخته شدهاند.علاوه بر علایم I ، ∆ ، H، X ، M برای 1 ، 10، 2^10 ، 3^10 ، 4^10 علامت خاصی باری 5 وجود دارد. این علامت خاص شکلی قدیمی از π است ، که حرف اول کلمه پنته (pente {پنج}) است ، و ∆ حرف نخست دکا( deka {ده}) یونانی است . سایر علایم را نیز میتوان به همین نحو توضیح داد . از علامت به کار رفته برای 5 ، اغلب هم به طور منفرد و هم در ترکیب با سایر علائم استفاده میشد تا نمایش عددی کوتاهتر شود. به عنوان مثال در این دستگاه شما داریم:
2857 =ХХГHHHГГ
که در آن میتوان علامت خاص برای 5 را که یکبار تنها و دوبار در ترکیب با سایر علائم ظاهر شده تشخصی داد.
یکی از روشهای عددنویسی آشنا برای ما، عددنویسی به روش رومی است.در گذشتههای دور ، علائم اصلی I،X،C،M برای 1 ، 10 ، 2^ 10 ، 3^10 ، علایم V ، L و D برای 5 ، 50 و 500 افزوده میشوند . اصل تفریق ، که مطابق آن ، وقتی علامتی برای واحد کوچکتر قبل از علامت بکار رفته برای واحد بزرگتر قرار گیرد ، معنی تفاضل این دو واحد را دارد ، فقط به ندرت در دورههای باستان و میانه بکار میرفت. استفاده کاملتر از این اصل در اعصار جدیدتر معمول گردید . به عنوان مثال ، در این دستگاه داریم
1944= MDCCCCXXXXIIII
یا در اعصار جدیدتر با متداول شدن اصل تفریق :
1944=MCMXLIV
در کوششهایی که برای توضیح ریشههای دستگاه اعداد رومی میشود، حدس و گمان نیز وجود دارد. یکی از توضیحات موجهتر که مورد قبول عده زیادی از صاحب نظران در تاریخ لاتین و علم کتیبهخوانی است، این است که I، II، III، IIII از شکل انگشتان بلند شده گرفته شدهاند. علامت X نیز ممکن است ترکیبی از دو V باشد یا شاید از شکل دستها یا انگشتان صلیب شده به ذهن راه یافته باشد ، یا شاید هم ناشی از این عادت رایج بوده باشد که موقع شمارش با پارهخطها ، خطی بر روی گروههای دهتایی میکشیدند.
دستگاههای شمار رمزی
در یک دستگاه شمار رمزی ، بعد از اینکه یک پایه b انتخاب گردید، علایمی برای
فایل پیوست 1488
اختیار میشود. اگرچه در چنین دستگاهی علایم زیادی باید به حافظه سپرده شود ، نمایش اعداد در این روش فشرده است.
دستگاه شمار یونانی به اصطلاح یونیایی (ionic) ، یا الفبایی ، از نوع رمزی است و میتوان رد آن را تا 450 ق.م پیگیری کرد. این دستگاه در پایه 10 است و در آن از 27 نشانه - 24 حرف الفبای یونانی همراه با علایم حروف منسوخ دیگاما (digamma) ، کوپا (koppa) و سامپی (sampi) - استفاده میشود. گرچه در این دستگاه از حروف بزرگ استفاده میشد و حروف کوچک خیلی دیرتر جانشین آنها گردیدند ف در اینجا دستگاه را با حروف کوچک شرح خواهیم داد. این علایم باید به خاطر سپرده میشدند .
1 آلفا ɑ
2 بتا β
3 گاما γ
4 دلتا δ
5 اپسیلون ε
6 دیگاما (منسوخ)
7 زتا ζ
8 اتا η
9 تتا θ
10 یوتا ι
20 کاپا κ
30 لامبدا λ
40 مو μ
50 نو ν
60 کسی ξ
70 اومیکرون ο
80 پی π
90 کوپا (منسوخ)
100 رو ρ
200 سیگما σ
300 تاو τ
400 اپسیلون υ
500 فی φ
600 خی χ
700 پسی ψ
800 اومگا ω
900 سامپی (منسوخ)
به عنوان مثالهایی از موارد کاربرد این علایم ، داریم
12 = β ι
21 = ɑκ
274 = ζμσ
سایر دستگاههای شمار رمزی عبارتند از هیراتی و دموتی مصری ، قبطی ، هندی ، برهمایی ، عبری، سوری و عربی بدوی . سه تای آخری ، مانند یونانی یونیایی ، دستگاههای شمار رمزی الفبایی هستند.
[i] منسوب به هرودین (Herodian) ، صرف و نحودان یونانی که در حوالی سال 170 پیش از میلاد در رم دستور زبان درس میداد و یکی از آثار معروفش «قاموس زبان یونانی آتن» است.
1 فایل پیوست
1-روشهای ابتدایی عددنویسی و شمارش (بخش سوم و پایانی)
محاسبات نخستین
بسیاری از الگوهای محاسبه که امروزه در حساب مقدماتی بکار میروند، تظیرِ آنها که برای انجام ضرب و تقسیمهای طولانی مورد استفادهاند،در حوالی قرن پانزدهم ابداع شدند . معمولا دو دلیل برای توضیح این پیدایش دیررس اقامه میشود که عبارتاند از مشکلات ذهنی و مشکلات مادی.
به مورد اول، یعنی مشکلات ذهنی زیاد نباید توجه کرد. این گمان که هتا سادهترین محاسبات در دستگاههای شمارِ قدیم عملی نیست ، عمدتا ناشی از ناآشنایی با این دستگاههاست . روشن است که که جمع و تفریق در یک دستگاهِ گروهبندی ساده تنها نیازمندِ شمردنِ انواع مختلف علایم و سپس تبدیل آنها به واحدهای بالاتر است. در اینجا ضرورتی به از حفظ داشتنِ ترکیبهای عددی وجود ندارد. در دستگاه شمار رمزی ، اگر جداول جمع و ضرب به میزان کافی به حافظه سپرده شوند، کار را میتوان بسیار شبیه به آنچه که امروزه انجام میشود پیش برد. پل تانری (Paul Tannery) ریاضیدان فرانسوی مهارت زیادی در ضرب با دستگاه شمار یونیایی یونانی کسب کرده و هتا نتیجه گرفت که این دستگاه مزیتهایی بر دستگاه امروزی ما دارد.
با اینحال مشکلات مادی، وجود داشته و واقعیت کامل داشتند . عدم دسترسی به مادهای چون کاغذ که بتوان روی آن نوشت، از مهمترین دلایل کندی پیشرفت حساب بود . توجه داشته باشید که کاغذِ امروزی که از خمیرِ چوب ساخته میشود، کمی بیش از یکسد سال قدمت دارد . کاغذ قدیمیتر با استفاده از پارچه کهنه با دست ساخته میشد و به همین دلیل گران و کمیاب بود. و هتا همین نوع کاغذ هم تا پیش از سال 1200 متداول نبود . اگرچه گفته میشود که چینیها هزار سال قبل طرز ساختن آنرا میدانستند.
یک ماده قدیمی کاغذمانند برای نوشتن که پاپیروس نامیده میشد ، توسط مصریان قدیم اختراع و قبل از سال 650 ق.م در یونان معمول شده بود. پاپیروس از نوعی نی آبی به نام پاپو(Papu) ساخته میشد . روش ساختِ آن نیز تا نسبتا دشوار بود .
از دیگر وسیلههای نوشتن، کاغذ پوستی بود . این کاغذ از پوست گوسفند یا بره ساخته میشد و معمولا به شدت گران و نایاب بود.به گونهای که در قرون وسطا از کاغذهای پوستیِ استفاده شده در ادوارِ گذشته ، مجددا استفاده کنند.
راه خروج از این مشکلات ذهنی و مادی، اختراع چرتکه بود که میتوان آنرا قدیمیترین ابزارِ مکانیکی برای محاسبه خواند که به دست نوع بشر بهکار رفته است . چرتکه به شکلهای مختلف در قسمتهایی از دنیای قدیم و وسطی ظاهر گردید .
دستگاه شمار هندی-عربی
دستگاهِ شمارِ هندی-عربی به هندیان که احتمالا مخترعِ آن هستند و به اعراب که آنرا به اروپای غربی انتقال دادند منسوب است . قدیمیترین نمونههای محفوظ مانده از علایم عدیی امروزی، بررروی چند ستون سنگی که در حدود 250 ق.م به وسیله شاه آشوکا (Aŝoka) در هند برپا شدند ، یافت میشود . نمونههای قدیمی دیگری ، اگر به درستی تعبیر شده باشند در هند ، در آثاری که حدود 100 ق.م بر دیوارهای غاری در تپهای نزدیکِ پونه (Poona) کنده شدهاند و در بعضی کتیبههای حفاری شده متعلق به حدود سال 200 ب.م در غارهایی واقع در ناسیک (Nasik) پیدا شدهاند . در این نمونههای قدیمی ، صفر وجود ندارد و در آنا از نمادگذاری موضعی استفاده نشده است . با این حال ارزش موضعی ، و نیز صفر ، میبایستی در زمان قبل از 800 ب.م در هند معمول شده باشد ، زیرا خوارزمی ، ریاضیدان ایرانی چنین صورت کاملی از دستگاه هندی را در کتابی متعلق به 825 ب.م شرح میدهد.
اینکه علایم شمار جدید ، چگونه و در چه زمانی برای اولین بار وارد اروپا شدهاند، معین نیست . به احتمال قوی انتقال آنها توسط بازرگانان و سیاحانِ سواحل میدترانه صورت گرفته است . این علایم در یک دستنوشتهی اسپانیایی نتعلق به قرن دهم دیده میشوند و ممکن است به وسیله اعراب که در سال 711 ب.م به این شبهجزیره حمله کردند و سدها سال در آنجا ماندند، در اسپانیا معمول شده باشند . دستگاهِ کامل شده با ترجمهی لاتینِ رسالهی خوارزمی در قرن دوازدهم و کارهای بعدیِ اروپائیان در اینباره به طور وسیعتری رواج یافت.
طی 200 سال پس از آن ، نزاعهایی بین طرفدارانِ چرتکه و الگوریستها (algorisyt) ، نامی که به هواخاهانِ دستگاه جدید اطلاق میشد ، درگرفت و پیش از سال 1500 ب.م قواعد کنونی ما در محاسبات چیرگی یافتند . با گذشت سد سال دیگر ، طرفداران چرتکه تقریبا از یاد رفته بودند و با آغاز قرن هجدهم هیچ اثری از چرتکه در اروپای غربی دیده نمیشد. پیدایشِ مجددِ ان ، به عنوان یک تحفه ، مدیون پونسله (Poncelet) مهندس فرانسوی بود که بعد از آزاد شدن از زندانِ روسها ، که به دنبال لشکرکشی ناپلئون به روسیه بدان گرفتار شده بود، نمونهای از آن را به فرانسه آورد.
علائم عددی قبل از آنکه با پیدایش صنعتِ چاپ تثبیت شوند، صورتهای مختلفی به خود گرفتند . کلمه زیرو (Zero) انگلیسی احتمالا از زفیروم که صورت لاتینی صر است گرفته شده است. و این کلمه به نوبهی خود ترجمهی سونیا (sunya)ی هندی به معنای «پوچ» یا «تهی» است . صفر عربی در قرن سیزدهم به صورت صیفرا (cifra) توسط نموراریوس (Nemorarius) واردِ آلمان شد که واژهی واژهی cipher انگلیسی با معنای صفر ، ماخوذ از آن است .
فایل پیوست 1526
طرفدار چرتکه در مقابل الگوریست (از گریگور رایش (Gregor Reisch)، مارگاریتا فیلوسفیکا (Margarita Philosophica) ، استراسبورگ، سال 1504 (
2-ریاضیات بابلی و مصری (بخش اول)
شرقِ باستان
ریاضیاتِ اولیه برای توسعهی خود به یک پایهی علمی نیازمند بود و چنین پایهای با پیدایشِ اشکالِ پیشرفتهتر جامعه به وجود آمد. در امتداد برخی از رودخانههای بزرگِ افریقا و آسیا یعنی نیل در آفریقا و، دجله و فرات در آسیای غربی ، سند و پس از آن گنگ در اسیای جنوبی میانه، و هوانگهو و پس از آن یانگ تسه در آسیای شرقی بود که اشکالِ جدیدِ جامعه ظاهر شدند. با خشک کردنِ باتلاقها ، کنترلِ سیلاب، و آبیاری، این امکان وجود داشت که زمینهای واقع در امتدادِ این رودخانهها به نواحی کشاورزی ثروتمندی تبدیل شوند. طرحهای گستردهای از این نوع، نه تنها این مکانهای سابقا جدا از هم را به هم وصل کردند، بلکه مهندسی، علوم مالی، و مدیریت طرحها و مقاصدی که این طرحها برای آنها ابداع میشدند، توسعهی دانش فنی و ریاضیاتِ ملازم با آن را ایجاب کردند. از اینرو میتوان گفت که ریاضیاتِ اولیه در نواحی معینی از شرقِ باستان و بدواً دانشی عملی برای کمک به کارهای کشاورزی و مهندسی پدید آمده است. این کارها به محاسباتِ یک تقویمِ قابل استفاده، ایجادِ دستگاههای اوزان و مقادیر برای استفاده در برداشتِ محصول، انبار کردن و تقسیم غذا، ایجادِ روشهای نقشهبرداری برای ساختنِ آبراهها و آببندها و برای توزیعِ زمین و کسبِ تجربیاتِ مالی و بازرگانی برای وضع و جمعآوری مالیتها و برای مقاصدِ داد و ستد نیاز داشتند.
همچنانکه دیدیم، تاکیدِ اولیهی ریاضیات بر حساب عملی و مساحی بود. حرفهی خاصی برای پرورش، بهکارگیری، آموزشِ این دانشِ عملی به وجود آمد. با این حال در چنین احوالی گرایش به تجرید به ناچار میبایست پدید میآمد و از آن پس علم مزبور تا حدودی به خاطر خود علم مورد مطالعه قرار گرفت. بدین طریق بود که جبر مآلا از تکاملِ حساب به وجود آمد و مقدمانِ هندسهی نظری از بطنِ مساحی رشد یافت.
با این حال باید توجه داشت که در تمامِ ریاضیاتِ شرقِ باستان، هتا یک مورد از آنچه امروز آن را برهان مینامیم، نمیتوان پیدا کرد. به جای استدلال، صرفا توصیفی از یک سلسله عملیات وجود دارد.به شخص دستور داده میشود که «چنین کن و چنان کن». بعلاوه به جز احتمالا در چند موردِ معدود ، این دستورها هتا به صورتِ قواعدِ کلی داده نشده، بلکه صرفا برای رشتههایی از حالاتِ خاص به کار گرفته شدهاند. مثلا، در توضیحِ حلِ معادلاتِ درجهی دوم، نه نحوهی استخراجِ سلسله اعمالِ به کار رفته را مشاهده میکنیم و نه شاهدِ توصیفِ این سلسله عملیات در قالبِ عباراتِ کلی هستیم؛ بلکه به جای آن، تعدادِ معتنابهی از معادلاتِ درجهی دوم عرضه میشود و در هر مرحله گفته میشود که هر یک از این مواردِ خاص را چگونه حل کنیم. روشهای «چنین کن و چنان کن» هرچند نامقبول به نظر میآیند، نباید تعجبآور باشند، زیرا که تا حدِ زیادی همان روشهایی هستند که خودِ ما اغلب در تدریس قسمتهایی از ریاضیات در دبستانها و دبیرستانها به کار میبریم.
در تعیینِ قدمتِ اکتشافاتی که در شرقِ باستان به عمل آمده است، مشکلاتی وجود دارد. یکی از این مشکلات در ماهیتِ ایستای ساختِ اجتماعی و انزوای طولانی برخی نواحی نهفته است. مشکلِ دیگر معلول جنسِ موادی است که کشفیات بر آنها ثبت میشدند. بابلیها از لوحهای سفالی پردوام استفاده میکردند و مصریها سنگ و پاپیروس را به کار میبردند، که خوشبختانه این دومی به علتِ آب و هوای فوقالعاده خشکِ منطقه پردوام بود. اما چینیان و هندیانِ اولیه از وسایلِ کاملا بیدوام مانندِ پوستِ درخت و خیزران استفاده میکردند. بدنی ترتیب در حالیکه اکنون کمیتِ نسبتاً قابلِ ملاحظهای از اطلاعاتِ قطعی راجع به علوم و ریاضیاتِ مصریانِ باستان وجود دارد، دربارهی این مطالعات در چین و هندِ باستان اطلاعاتِ کمی ، ولو به میزانِ قطعیتِ اندک وجود دارد. از این رو در چند پیک پس از این، تنها به ریاضیاتِ بابل و مصر میپردازیم.